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Exact analytic results for symmetric, nonnearest-neighbor random walks 
in one-dimensional finite and semiinfinite lattices are presented. Random 
walks with exponentially distributed step lengths are considered such that  
variation of a single parameter  permits one to cover the whole range of 
step lengths from nearest-neighbor transitions to steps of aribtrary length. 
The generating functions for such lattices are derived and used to calculate 
a number  of moment  properties (mean first passage times, dispersion in the 
mean recurrence time). Since explicit expressions for the generating func- 
tions for these walks are obtained, additional moment  properties can 
readily be calculated. The results found here for a finite system are com- 
pared to results found previously for a system with periodic boundary 
conditions. Two different semiinfinite systems are also considered. 
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1. INTRODUCTION 

In the first paper of this series (~> (hereafter referred to as I) one-dimensional, 
nonnearest-neighbor random walks on infinite systems and on systems with 
periodic boundary conditions were considered. In many physical problems 
that may be describable by nonnearest-neighbor random walks the system 
has natural boundaries whose effect on the random walk cannot be ignored. 
Examples of such systems may be random walks in energy space, (2~ exciton 
diffusion on finite polymers, and electrical conductivity in amorphous semi- 
conductors in the presence of trapping lines or planes. (3~ 

Exact analytic results for random walks with exponentially distributed 
step lengths in one-dimensional finite and semiinfinite systems are considered 
here. Only symmetric random walks are treated, but similar considerations 
can probably be used to analyze asymmetric walks. Using the modern 
techniques in this field developed by Montroll and his co-workers, (4-8> the 
generating functions for several systems are found explicitly and used to 
evaluate mean first passage times and, in one case, the dispersion in the mean 
recurrence time, as examples of their applications. 

The random walks considered here are treated in terms of a discrete 
time variable (step number). The passage to continuous-time random walks 
is straightforward given a distribution of stepping times. <9,1~ 

Some of the results found in this paper have been given elsewhere for 
nearest-neighbor random walks. (11~ 

The following notation will be used: 
p(l, l') is the probability that the random walker steps from site l' to site l 

in one step. 
P,~(l, l') is the probability that the random walker starting his walk at 

site l' is at site l after n steps. These probabilities satisfy the normalization 
conditions 

~ p ( l ,  I') = 1 (1) 
I 

and 

e~q, I') = 1 (2) 
l 

The generating function Gzz,(z) is defined by (4~ 

c~,(z) - ~ z~e~q, r )  (3) 
n = O  

The probability P,(/, l') and the generating function G~,(z) satisfy the 
equations 

P,(1, l') = ~ p(l, l")P,~_ 1(l", l') (4a) 
l" 

Po(l, l ') -= 3z~, (4b) 
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and 

c . . ( z )  - z p(/ ,  /")G,,,z.(z) = (s)  

where 3zz. is the Kronecker delta. In addition to Eqs. (4) and (5), P,~(l, l') and 
Gzu(z) satisfy boundary conditions to be specified later. 

In I we used the stepping probabilities 

p(l, l ') = �89 ~ - l)e -Iz-z'l~, II - l '  I > 0 

= 0, l =  l '  (6) 

to describe a symmetric random walk with exponentially distributed steps 
on a perfect, infinite, one-dimensional lattice. In this paper Eq. (6) will be 
used to construct p(l, l') for lattices with boundaries. 

In Section 2 generating functions for finite and semiinfinite lattices with 
nonabsorbing boundaries are derived. In Section 3 generating functions for 
systems with completely absorbing or trapping boundaries are given. In 
Section 4 the generating functions are used to obtain several moment 
properties. 

2. G E N E R A T I N G  F U N C T I O N S  FOR LATTICES W I T H  FREE END 
B O U N D A R Y  C O N D I T I O N S  

2.1. Fini te Latt ices 

Most random walk calculations in finite systems have been carried out 
using periodic boundary conditions (PBC) (1,4-8~ (Fig. la). Since such a ring 
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Fig. 1. Finite one-dimensional lattices. 
(a) System with periodic boundary condi- 
tions (no boundaries); (b) system with 

boundaries. 
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has no boundary, it is the simplest finite lattice one can consider. In I we 
treated symmetric and asymmetric walks on a ring with exponentially 
distributed stepping probabilities, which in the symmetric case are given by 

e a - -  1 
pPBC(l, l') = 2(1 -- e -N~) [e-II-vl~ + e-CN-IZ-VL~]' l r l '  

(7) 
( e ~ -  1)e-N~ l' 

- -  l _ e _ N ~  , l =  

The effect of boundaries can be studied by considering a symmetric 
random walk on the lattice shown in Fig. l(b). Corresponding to various 
physical situations, there are many boundary conditions one can specify 
for such a system. To clarify the choice made below, it is useful to first 
consider a symmetric nearest-neighbor random walk. On an infinite lattice 
in the absence of boundaries the stepping probabilities are [cf. Eq. (6) as 
a ---~ o o ]  

p ( l , l ' ) =  �89 for I I - l '  I = 1 

= 0 otherwise (8) 

I f  a nearest-neighbor random walk takes place in the system of Fig. l(b), the 
boundaries do not affect the stepping probabilities unless the walker is at 
lattice sites 1 or N. That  is, for 1 ~< l ~< N and 2 <~ l '  ~< N - 1, pBB(I, l ') 
(the superscript indicates the two boundaries) is given by Eq. (8). At the 
boundary sites 

pBB(1, 1) = pBB(N, N )  = K (9a) 

and 

pBB(2, 1) = pSS(N -- 1, N )  = 1 - K (9b) 

with 0 ~< K ~< 1, where the choice of Kis  dictated by the physics of the prob- 
lem. When K = 0 one is dealing with completely reflecting barriers. When 
K = 1 the boundary sites are completely absorbing barriers, i.e., ones the 
walker cannot leave. When 0 < K < 1 it is a matter  of  semantics whether 
one calls the boundaries partially reflecting or partially absorbing. Boundaries 
defined by K = �89 have been referred to as free end boundaries. <11~ The 
choice K = �89 is the only one that preserves the basic symmetry of the walk, 
i.e., it is the only choice for which pBB(I, l ') = pSB(l', l) for all l, l '  including 
the boundary sites 1 and N. This symmetry implies that the equilibrium 
distribution of the system is uniform since Eqs. (1), (2), and (4) then yield 
limn~ ~ P~B(I, l') ---- 1/N for all l and l ' .  

The free end boundaries for the nearest-neighbor random walk can also 
be constructed as follows/TM Consider an infinite lattice without boundaries 
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and the stepping probabilities of Eq. (8). The additional requirement that 
there be no net flux of probability between sites 0 and 1, and between sites 
N and N + 1, can be expressed by the conditions 

P~(0, l') = P~(1, l') (10a) 

Pn(N + 1, l') = P,~(N, l') (10b) 

for all 17. For 1 ~< l ~< N and 1 <~ l' <~ N, P~(l, l') in this problem is identical 
with sB P~ (l, l') obtained in the presence of boundaries with K = �89 in Eqs. (9a) 
and (9b) and can therefore be used to describe a random walk on a finite 
lattice. The sites l ~< 0 and l/> N + 1 and the probabilities of being at these 
sites are merely fictitious quantities that enable one to express the boundary 
conditions in terms ofP~(/, l') instead of p(/, l'). This method is equivalent to 
the method of images in electrostatics. 

In a random walk where steps o f  any size can occur there are a large 
number of ways of defining pBB(1, l') so that the walker remains in the range 
1 ~< l ~< N. In this case pBB(/, l') will in general differ from the infinite lattice 

p(l, l') for all l, l '  rather than just at the boundary sites. Here, only the 
generalization of the free end boundary conditions will be considered. Another 
partially reflecting (or partially absorbing) boundary is treated later for semi- 
infinite lattices. 

To construct pBB(l, l') with free end boundary conditions for a random 
walk with exponentially distributed steps, consider a fictitious infinite lattice 
with stepping probabilities given by Eq. (6) and the additional conditions 

P ~ ( - I  + 1, l') = P~(I, l') ( l la)  

P,~(N + l, l') = Pn(N + 1 - l, l') (1 lb) 

for all l, l', and n. Equations ( l la)  and ( l lb )  are the generalization of the 
corresponding nearest-neighbor equations (10a) and (10b) to a long-range 
random walk, and are sufficient conditions for there to be no flux of prob- 
ability across the boundaries. As shown in Appendix A, Eq. (4a) on the 
infinite lattice combined with Eqs. ( l la)  and ( l ib )  for 1 ~< ]' ~< N and 
1 ~< l ~< N then yields a single equation for P~B(1, l') which incorporates the 
zero flux conditions: 

N 

j ~ n - l ~  , l ' )  ( 1 2 )  
/"  = 1 

with the initial condition still given by Eq. (4b), and 

e a -  1 
pBB(l, l ') -- 2 sinh Na 

x {cosh[(N - l - l '  + 1)a] + cosh[(N - ]l - l't)a]}, 1 # l '  
1 (13) 

- -  { e  - N a  + cosh[(N - 21 + 1)a]}, l = I' 
2 sinh Na 
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Equation (13) then gives stepping probabilities for a nonnearest-neighbor 
random walk in a finite system with free end boundaries. The probabilities 
are symmetric in I and l' and hence the equilibrium distribution is uniform. 
Equation (13) reduces to the corresponding nearest-neighbor case discussed 
earlier (with K = �89 as a -+ oo. 

The effect of the boundaries on the stepping probabilities is best seen 
by comparing Eq. (13) with the corresponding probabilities for a system with 
periodic boundary conditions, given in Eq. (7). While the latter probabilities 
depend only on the length ll - l ' I of the step, in the presence of boundaries 
pBB(l, l') depends on both l and l', i.e., the probabilities depend on where the 
walker is and where he is going. The effect of the boundaries is strongest near 
the boundaries. As a increases, the difference between pR~C(l, l') and pm3(l, l') 
shifts more and more toward the boundary sites. As a--~ 0, both stepping 
probabilities tend to 1/N for all l and l'. Other properties of the two 
systems will be compared in Section 4. 

The generating function for the system with free end boundaries satisfies 
N 

G~?(z) - z ~ pBB(I, I")G~,,~,(z) = 3 u, (14) 
/ "  = J_ 

In terms of the eigenfunctions fk(l) and the eigenvalues )t(k) of the stepping 
probability matrix pBB of Eq. (13) 

G~'B(z) = ~ 1  fk(l)f~(l') 
~--~'o ~ --- z-~(k) (15) 

The set of eigenfunctions fk(/) is just that subset of the eigenfunctions for the 
infinite lattice that satisfies the boundary conditions (1 la) and(1 lb): 

fk(1) = (2/N) 1/2 cos[(2l - 1)rrk/2N] for k = 1, 2,..., N - 1 

= ( l /N) 1/2 for k = 0 

The corresponding eigenvalues are 

(exp a ) -  1 [ 1 
A(k) 

= 2 [exp(a + & k / N )  - 1 + 

The sum in Eq. (15) is carried out in Appendix B. The result is 

2(ea c~ ~ -  ~? n @a(s inas inNa)3n ,  
G~P(z) = e~(e2~ _ 1) sin ~ Na 

- (e 2" + 1 - 2e ~cosa)  

( 2 N -  l -  l ' +  1 - I I -  l'l)~ 
X C O S  

2 

( l + Z ' -  1 -  I Z - t ' l ) ~ )  
x cos 2 

exp(a - i~-k/N) - 1 

(16) 

(17) 

08) 
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where 

1 + e 2'~ + z ( e  ~ - 1) (19)  
c o s c ~ =  e ' ~ [ 2 + z ( e  ~ -  1)] 

Equat ion  (18) reduces to the neares t -neighbor  result  o f  Ref. 11 in the limit 
a ---~ o 9 .  

2.2. Semi inf in i te  Lattices 

I t  is o f  interest  for  m a n y  physical  applicat ions to consider nonneares t -  
ne ighbor  walks on semiinfinite lattices. Fo r  some applications,  e.g., for  
r a n d o m  walks in energy space, it may  be necessary to deal with asymmetr ic  
walks, but  we have not  found  analytic solutions for  the generat ing funct ion 
equat ion in such systems. 

The generating funct ion G~,(z )  for  a semiinfinite system with a free 
end boundary  condit ion at site zero satisfies Eq. (14) with N - + o e  and 

pB(l ,  I ' )  = lim~v_~ 0o pm3(l,  t ' )  

= �89 ~ - 1)[e -<~+v-1)~ + e-I~-z' l"] ,  l # l '  

= �89 ~ - 1)e -(2.-1)~, l = l '  

(20) 

The solution is mos t  conveniently obta ined by considering Eq. (15) in the 
l imit  N - +  0% 

1 f2~ 
~ - -  d R  6~,(z) '~Jo 

1 

c o s [ ( 2 / -  1)u/2l cos[(2/ '  - 1)u/2] (21) 
( 1 1 ) z ( e  ' ~ -  l) 'e a+~  + 

2 - 1 e ~-~u - 1 

Stra ightforward contour  integrat ion gives 

2(x - e~) (xe  ~ - 1) (xZ+V_ 1 + xlZ_vl ) 
G~,(z )  = e~[2 + z(e~ _ 1)](x2 _ 1) 

2~ll, 
+ 2 + z ( e  '~ - 1) (22) 

where 

e 2 a +  1 + z ( e  a -  1 ) -  (e ~ -  1){(1 - - z ) ( e a +  1)[ea + 1 + z ( e  a -  1)]} 1/2 
x = e~[2 + z ( e  ~ - -  1)] 

(23) 

A semiinfinite lattice with a different boundary  is t reated in Appendix  C. 
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3. G E N E R A T I N G  F U N C T I O N S  FOR LATTICES W I T H  
C O M P L E T E L Y  A B S O R B I N G  B O U N D A R I E S  

Two types o f  comple te ly  abso rb ing  boundar i e s  will be considered here. 
One type o f  b o u n d a r y  absorbs  the  walker  only i f  he steps o n  the bounda ry ,  
i.e., on  a par t i cu la r  la t t ice site. This occurs,  for instance,  in the finite lat t ice 
of  Sect ion 2.1 i f  site l = 1 or  site l = N or  bo th  are t raps  (see Fig. 2a). I t  
also occurs  in the semiinfinite latt ices o f  Section 2.2 and  A p p e n d i x  C if  site 
l = 1 is a t r ap  (Fig. 2b). The second case is one in which a walker  is t r a p p e d  

i f  he steps o n  or c r o s s e s  the absorb ing  bounda ry .  This  s i tuat ion cor responds  
to a semiinfinite la t t ice with t raps  at  all  sites l />  N + 1 (Fig. 2c). A system 
with two absorb ing  bounda r i e s  o f  the second type was t rea ted  in I and  there-  
fore need not  be discussed here. I t  should  be no ted  tha t  for  a neares t -ne ighbor  
r a n d o m  walk  the two types o f  boundar i e s  are the same since then a walker  
canno t  cross over  a t r app ing  lat t ice site. 

3.1. Finite Latt ices 

I f  in the finite system of  Section 2.1 lat t ice site l = 1 is a t r ap  and  I -- N 
is a free end bounda ry ,  then the s tepping p robab i l i t y  mat r ix  pTB (the super-  

TRAP TRAP 

@ C) 0 : : : 0 0 | (a) 
~: I 2 3 N-2 N -I N 

TRAP 

| (3 O : : -- O G : 
e:l 2 3 I~ ~+l 

-- -- (b) 

TRAPS 
I > 

: : : O (~ : : : | : ; ; (�9 
0=I 2 N N+I N+I~ 

Fig. 2. One-dimensional lattices with absorbing boundaries. 
(a) Finite system with two trapping boundaries; (b) semi- 
infinite system with a trapping boundary and an infinite 
number of nontrapping sites; (c) semiinfinite system with an 
absorbing boundary and a finite number of nontrapping sites. 
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script T denotes the trap at the boundary)  can be written in terms of  pBB 
of  Eq. (13) as 

pTB(/, l ' )  = pBB(/, /')(1 -- 32,t) + 8n,8~,1 (24) 

Equat ion (24) expresses the fact that  the walker cannot  leave site 1 = 1 once 
he steps on it. The generating funct ion for this system satisfies the equat ion 

N N 

GTzB,(z) - z ~ pBB(l, l")GT,,~,(z) = 3w -- z ~ ApTB(I, I")GT,~,(z) (25) 
l " = 1  U ' = I  

where, f rom Eq. (24), 

ApTB(/, / ,)  = [pBB(/, / 3  -- 3;,,]8,,1 (26) 

Compar ison of  Eqs. (25) and (14) shows that  G~B,(z) can be used as a Green 
function for the solution o f  Eq. (25): 

N N 

"-,j t , APTB(J, q)G~,(z) 
] = 1  q = l  

N (27) 
BB BB " 

J = l  

+ zG~?~(~)aT~(z) 

Straightforward manipulat ions yield 

6 p ( z )  = 6 p,(z) 
G~(z) + (1 -- z - ~ ( z )  8'1 (28) 

I f  lattice sites l = 1 and l = N are both  traps, then there are two 
absorbing boundaries,  and since the walker cannot  leave sites 1 or N, 

pTT(I, 1') = pBB(I, I')(1 -- 3,,~)(1 -- 3,,N) + 3,,,(3,,1 + 3,,N) (29) 

Using G~B,(z) as a Green function yields 

/~.BB g~_BB t~_BB (~BBg'~BB~BB t~BB g~BU g~BB (~BB g~_BB t'~BB 
G~7 = G~, B - ~'11 " n  "'1,' - "21 -'lNUNt" + "lN "NN"m'  -- " m"NI ' lZ ,  

/~_BBI'JBB ( U B B ( 2 B B  
V l l U N N  - -  U l N V N 1  

( / T B B  (213B /Z'~BB ( 2 B B  ~ ,~ / [ ' J B  B (UBB ( ' j B B  ~ B B ~ . q  
U l l  U l l "  - -  U l N ~ . t N l , j U l l  -~- I . t . T N N U N I ,  - -  t . r N l ~ l l , j U i N  

+ CBBCBB _ ~BB~BB (30) 
~ii UNN ~ , J 1 N ' , J N 1  

Equations similar to (28) and (30) are given in Ref. l l for nearest- 
neighbor random walks. In that  case the lattice with traps at l = 1 and 
l = N is equivalent to a lattice with periodic boundary  conditions and a 
single trap. 
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3.2. Semiinf ini te Lattices 

The generating funct ion for the semiinfinite lattice of  Section 2.2 with 
traps at all sites l />  N + 1 will be denoted by G~A,(z). Since the walker cannot  
leave any of  the t rapping sites, this generating function satisfies 

N 

c~+(~) = ~ ~ p~(t, " " ' ~  l )Ov, v(z)  + 3u,, 1 <<. l <<. N 
V ' = I  

~, (31) 
= z ~ pB(l, l")G~,,~,(z) + zG~.A(z) + 3 , , ,  l > N 

/ " = 1  

with pB given by Eq. (20). Equat ion (31) can be rewritten as 

ap,,~(z) - z ~ p~q, l")a~4,(z) = ~,, ,-  z 
U' = 1 

where 

ApB(l, l " ) G ~ , ( z )  (32) 
/ " = N + I  

ApB(l,  l") = pB(l, l") -- Su", l > N (33) 

The generating funct ion in the absence o f  the traps at sites l > N, G~,(z), 
can now be used as Green function for the solution of  Eq. (32): 

G~,A(z) = G~,(z) - z ~ ~ G ~ ( z ) A p B ( j ,  q)G~r 
J=l q=N+l 

The solution of  Eq. (34) for 1 <~ l '  <~ N i s  

where 

1 + hB(z) 

(34) 

(35) 

f B ( z )  = - (e 2~ - 1)e-<2~- 1~/2(1 _ x ) z2 (x  u +z + x u-Z+ 1) 

x {(1 - z)[2 + z(e  ~ - 1)](1 + x ) ( x  - e~)} -~, 

= -ze~/2{x(1  + x ) (e  ~ -  1)2e -l~ 

+ [(1 - xe~)x  z+N + (x  - e~)xZ-N](1 - x )e  -N'~} 

x [(e ~ - 1)(1 - z)x(1 + x)] -1, l > N 

v~,(z) = [(x - e~)e (2N-l~a/2 + (xe  ~ - 1)e-(2N+l~/2](x z~+~' + x N-v+1) 

x {[2 + z ( e  ~ -  1)](x 2 -  1)} -~, 1 <~ l '  ~< N 

hB(z) = ze~(1 -- x){[(x -- e ~) -- (1 -- xe~)e-2N'~]x2N 

+ [(1 -- xe '  9 -- ( x  -- e~)e-2N~]} 

x [2(1 -- z)(e  ~ -- 1)(1 + x ) ( x  -- eg]  -~ 

I < ~ I < ~ N  

(36) 

(37) 

(38) 
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4. M O M E N T  PROPERTIES 

4.1. Finite Lattices 

The generating functions found in the foregoing sections can be used to 
calculate various moment properties of  the random walk. In this section the 
mean time (i.e., average number of steps) for a random walker on a finite 
lattice with free end boundaries to reach site I for the first time is evaluated. 
The problem of  mean first passage time is completely equivalent to that of the 
mean time for absorption or trapping at site I. The dispersion in the recurrence 
time of the walker is also given. These results are compared to the correspond- 
ing ones for a finite system with periodic boundary conditions. 

Let BB D~ (l, l ') be the probability that a walker starting at site l '  reaches 
site l on the nth step for the first time in a finite system with free end boundaries. 
The generating function 

E~B,(z) -- ~ z'~D~B(1, l') (39) 
l Z = I  

is related to G~P by(4~ 

E~?,(z) = [C~,~(z) - ~z , , ] /CP?(z)  (40)  

The mean first passage time for arrival at site l is 

~ ,  = (O/~z)EgB,(z)]z= l (41) 

Using Eqs. (18), (19), and (40) in Eq. (41) with 1 # l '  yields 

2N l' ~7~ e~(e ~ (e~ - +  1)21) ( 1 -  l')(1 + l' - 1) + ~ ( e  ~ + 1)' l > 

(42) 
_ (e ~ -  1) 2 2N l' 

e~(e ~ + 1) (l' - I)(2N - l - l '  + 1) + (e ~ + 1----~' I < 

For  l = l '  we obtain the mean recurrence time 

1 I = N (43) 
~?? = ~z a ~ ( z )  ~= ~ 

in agreement with a general theorem on recurrence times in Markov chains (~ 
which is independent of step length. The effect of the boundaries can best be 
seen by comparing Eq. (42) with the corresponding result in a system with 
periodic boundary conditions (Fig. la), for which (~ 

t7~,Bc (e ~ -  1) 2 2N l '  
= e ~ e ~  ~ -~  [l - I ' I ( N  - [1 - / '[)  + ------~),(e ~ + l r (44)  

f i~o = N (45) 
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F r o m  Eqs. (42) and (44) it follows that  the effect of  boundaries  on mean first 
passage times is greatest for walks involving short  steps with sites l and l '  
near the boundaries.  

Averaging Eq. (42) over starting site l '  with l '  # l yields 

_ 1 n 

(n>~B - N - - - - - ]  ~ ~ff  
I ' = l  
l ' r  

= N ( e ~  - 1)2 [4N 2 - 6 N ( 2 1 -  1) + 3 ( 2 1 -  1) 2 - 1] 
6 ( N -  1)e~(e ~ + 1) 

2N  
+ e~ +-----]- (46) 

The corresponding result with periodic boundary  conditions is (~) 

(e ~ -  1) 2 N ( N  + 1) 2N (47) 
(n>~'Bc = e~(e ~ + 1) 6 + e ~ +-------1 

Hence 

(n)~ u - (n)~ uc 3(e ~ - 1 ) 2 ( 2 / -  N -  1) 2 
(n>~ B~ ( N -  1)[(N + 1)(e ~ - 1) 2 + 12e ~] 

> 3 ( 2 / -  N -  1) 2 (48) 
a>>logN>> i N 2 

The greatest difference between (n)~ ~ and (n)~ ~~ again occurs for walks 
with short  steps when l = 1 or N. When  a >> log N >> 1, (n>NBB/(n>NNPBC ,.~ 4. 

The dispersion in the mean  recurrence time of  the r a n d o m  walker, 

dp ~ -=_ [n~ ~B _ ( ~ ) ~  ( ~ ) 2  (49) 

with 

is 

-- ~ ~ 1 
n~, B~ = ~ z ~z G y ( z )  ~=1 (50) 

(e=--  1)2 [4N 2 -  6 N ( 2 / -  1) + 3 ( 2 / -  1) 2 ] 
d~B = 3Ne=(e  ~ + 1) 

e = -  3 2e 2 = -  7e = -  1 
+ (51) 

e ~ + 1 3N e=(e  a + 1) 

The corresponding result with periodic boundary  conditions is (1),3 

d~BC= N (e ~ -  1) 2 e ~ -  3 2e 2 ~ -  7e ~ -  1 
3 ea(e ~ + 1) e ~ +  1 + 3 N e ~ ( e  ' ~ +  1) (52) 

3 Equation (52) corrects two misprints in Eq. (104) of Ref. 1. Also, in Eq. (103) of Ref. I 
there should be a factor ( - z )  before the second derivative term. 
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Hence 

d~ B - d~BC 
d['Uc 

3(e = - 1 ) 2 ( 2 / -  N -  1) 2 
N 2 ( e  a - 1) 2 - 3Ner  ~ - 3) + (2e 2= - 7e ~ - 1) 

> 3 ( 2 / -  N -  I) 2 
a>>logN>> 1 N 2 (53) 

The greatest difference between d~ B and dr  Bc thus again occurs for  l = 1 and 
I = N. For  a >> log N >> 1, d~rU/d~ Bc ~_ 4. 

The finite lattice generating functions can be used to evaluate many  
other moment  properties3 4) 

4.2. Serniinfinite Lattices 

Let l '  ~< N denote the starting site o f  the walker. The mean number  o f  
steps required for t rapping at any site l />  N + 1 is found, by reasoning 
identical to that  used in I, to be 

~=1 (54) 
(e ~ -  1) 2 _ e ~ -  1 2 

= (N - r ) ( N  + l '  - 1) e-a-(d ~ T) + 2~v e-7-4-5 + +------~ 
e a 

The mean time to trapping averaged over starting site is 

1 

(n>B - -~'  (55) 

= ( 2 N -  1 ) ( N -  1) ( e = -  1)= 2N e ~ -  1 2 
37a-((e 7 q7 [) + ~ + e ~ +----~ 

Results with a different partially reflecting boundary  are given in 
Appendix  C. 

APPENDIX A. DERIVATION OF EQS. (12) A N D  (13) 

To obtain Eqs. (12) and (13), Eq. (4a) for an infinite lattice is first 
rewritten in three parts, 

0 N 

2 P,~(I, l ' )  = ~ e - " - r ' ) a P , _ , ( l " ,  l ' )  + ~ ' e - " - ' " t a P , ~ _ l ( l  ", l ' )  
e ~ -  1 r , = - ~  r,=l 

+ ~ e <' - r')aPn - 1(1", l ' )  (A. 1) 
/" = N +  s 
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where l, l '  are restricted to lie in the interval (1, N) and the prime on the 
second sum indicates that the term l" = l is omitted. Consider the first term 
on the right of Eq. (A.1): 

o 

e - ( l - v ' ) a P n _ l ( l "  , l ' )  = 
Z" = -- oa 

• e-r + 1, l') 
V ' = I  

N 

= ~ e-(Z+z"-l~P,_l(l", l') 
l " = l  

+ ~ e-(~+v'-~)~P,~_~(l ", l') (A.2) 
/"=N+I 

The first equality involves the change of variables l" --> - l + 1 ; for the second 
equality use was made of the boundary condition of Eq. (l la).  Equation 
(A.1) can now be rewritten as 

N 

2 P,(I, l') = ~ [e -II-v'l~ + e -(z+v'-l)~ - 8w,]P,~-l(l", l') 
e a - -  1 l"  = 1 

+ X,~_,(l, l') (A.3) 

where 

X,~-I(I, l') =- ~ [e (l-~')= + e-<'+v'-*>~]P,~_z(l", 1') (A.4) 
/ " = N + I  

The change of variables l" ~ l" + N and use of the boundary condition 
(1 lb) give 

X,~_I(I, l') = ~ [e (t-v'-N)~ + e-(~+v'+u-1)~lP,~_l(N + l", I') 
V = I  

= ~ [e ( ~ - v ' - ~  +'e-(Z+'"+u-l~lP~_l(N + 1 - l", l') (A.5) 
V ' = l  

Letting l" -+ N + 1 - l" yields 
N 

X~_~(l, l ' )  = ~ ,  [e ~§  + e -~ -~"+2~qe~_~( l  ", l ')  
V ' = l  

0 

+ ~ [e (z+v'-zN-l~ + e-r , l') (A.6) 
l - =  -- co 

The same steps as those used in Eq. (A.2) can be applied to the second sum 
in Eq. (A.7) to yield 

N 

x ._~( l ,  l ') = ~ [e ~+' ' -~N-~~ + e -~ '+' '+~N-'~ 
/ " = 1  

+ e -<z-l'+2m~ + e(~-v'-2m~lP~_,(l", l') 

+ e-2N~X~_~(l, l') (A.7) 
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Solving this equat ion for  X._  1(l, l ' )  and substi tuting into Eq. (A.3) gives 
N 

P,~(l, l ' )  = �89 ~ - 1) ~ [W~(1, l") + W2(1, l") - ~zz,.]P,~-~(l", l ' )  (A.8) 
U" = 1 

where 
1 e-2Na 

WI(I ,  l") = e - (~ § v ' -  1)~ e(Z + v" - 1),~ 
1 -  e - 2 m '  + 1 - e-2N~ 

= c o s h [ ( N -  l -  l" + 1)a] (A.9) 
sinh N a  

and 
e - 2 N a  

W~(1, l") = e -II-v ' l~ + 1 - e - 2N~ e-(z-v')'~ + 

c o s h [ ( N -  I I -  l " l )a  ] 

sinh N a  

Equat ions  (A.8)-(A.10) are equivalent to Eqs. (12) and (13). 

e - 2 N a  

1 - -  e -  2 N a  e ( z -  v ' )a  

(A.10) 

A P P E N D I X  B. DERIVATION OF EQ. (18) 

The sum indicated in Eq. (15) can be evaluated by a me thod  similar to 
one of  Mont ro l l ' s  (7> and  used in Ref. 11 for  nearest -neighbor  walks. The  
eigenvalues in Eq. (17) can be rewrit ten as 

A(k) = (e~ - 1)[e~ cos (~rk /N)  - 1] 
e 2~ + 1 - 2e '~ c o s & k / N )  (B. 1) 

Equa t ion  (15) then becomes 

- 1  2(e 2~ + 1) 
GPvB -- N(1 - z )  + N e l l 2  + z (e  a - 1)1 

N-1 COS[(2I-  1 ) r & / 2 N ]  cos[(2l '  - 1)Trk/2N] 
x ~ cos ~ - c o s ( r & / N )  h:=O 

4 
N[2  + z (e  ~ - 1)1 

x u~-i c o s & k / N )  cos[(2/cos-al)r&/2N]_ cos&k/N)C~ - 1 ) r & / 2 N ]  (B.2) 
/r 

with cos c~ defined in Eq. (19). The  denomina tors  occurr ing in Eq. (B.2) can 
be separated into part ial  f ract ions:  

1 
d = 

cos a - c o s & k / N )  

' f  ' } - sin c~ 1 - exp[i(a  + r & / N ) ]  - 1 - exp[- i (c~  - r & / N ) ]  (B~3) 
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Expressing the cosines in the numerators of Eq. (B.2) in terms of exponentials 
and using Eq. (B.3), one obtains 

e ~ cos c~ 1 f2(e ~ - 1) 2 sin c~. 
G~B" = 2Ne"(e 2'~ - ; sin ~ / 1 c--os-~- 

- (e  2" + 1 ) [S ( I  + l' - 1) + S(I - l')] 
" s  

e'~[S(l + l') + S( I  + l' - 2) + S(I  - l '  + 1) + S(I  - l '  - 1)]~ + 

(B.4) 
where 

S(m)  =- S l (m)  + S l ( - m )  (B.5) 

and 

N-a t 1 1 } Sl(m) = i ~ e '"kmm 
k=o exp[i(~ + r&/N)] - 1 exp[ - i (~  - ~-k/N)] - 1 

(B.6) 

The sum S~(m) is performed in Ref. 11 by expanding each denominator in 
Eq. (B.6) in an infinite geometric series, interchanging the order of  sum- 
mation, and performing both sums. The result for S(m)  is 

S(m)  = 2 - 2 Am(lsin ~-- cos ~) + 2N cos[(Nsin Nc~- ImlM (B.7) 

where 

f0 ,  m even 
Am =- 1, m odd (B.8) 

Substituting Eq. (B.7) into Eq. (B.4) yields Eq. (18). 

APPENDIX C. SEMI INFINITE LATTICE WITH WALL BOUNDARY 

Another partially reflecting boundary for a semiinfinite lattice that is 
easy to consider has the following characteristics. If  sites l and l' are away 
from the boundary (l, l' > 1), then the walker steps as on an infinite lattice, 
i.e., with the probabilities given in Eq. (6). A step which on an infinite lattice 
would have taken the walker to a site l ~< 1 now takes him to site l = 1 in 
the presence of the boundary. Finally if the walker is at site l = 1, he has 
probability r of staying there, and exponentially distributed probabilities of 
returning to sites l > 1. Thus the boundary behaves like a "s t icky" impene- 
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t r a b l e  wal l ,  a n d  sha l l  be  r e f e r r ed  to  as the  wal l  b o u n d a r y .  T h e  t r a n s i t i o n  
p r o b a b i l i t y  m a t r i x  pw for  th is  w a l k  t hen  has  e l emen t s  

p W ( l , l ' )  = � 8 9  ~ -  1)e- lZ-vl% l '  > 2, l>1 2, l # l '  

- o o  

pW(1, l ' )  = �89 ~ - 1) ~ e - ( v - ~  = �89 - r~ ,  l '  > 2 
i=1 

p W ( l , l ) = O ,  l / >  2;  p W ( 1 , 1 ) = r  

pW(l, 1) = (1 - r ) (e  ~ - 1)e - (z-1)a,  l ~> 2 (C.1)  

wi th  0 ~< r ~< 1. W h e n  r = 1, l a t t i ce  si te l = 1 b e c o m e s  a t r ap .  These  s t e p p i n g  
p r o b a b i l i t i e s  l ead  to  a u n i f o r m  e q u i l i b r i u m  d i s t r i b u t i o n  on ly  i f  r = 
(e = - 2) /2(e ~ - 1), wh ich  in t u r n  r equ i r e s  t h a t  e ~ /> 2. 

The  s o l u t i o n  o f  the  e q u a t i o n  

OW(z)  - z ~ pW(l,  l " ) a W r ( z )  = 8,,, (C.2) 
l " = l  

is 

GWl(z) = 
e a - -  X 

z(1 - r)(1 - x e  ~ ) -  (1 - z r ) ( x - e  ~) 

2z (e  2 ~ -  1)(e ~ -  1)(1 - r )  xZ_ 1 
a W ( z )  = e~[2 + z (e  a - 1)][z(1 - r)(1 - x e  ~) - (1 - z r ) ( x  - e=)] 

f o r l ~ >  2, 

z (e  2 ~ -  1) 
G g , ( z )  = [2 + z (e  ~ - 1)][z(1 - r)(1 - x e  ~) - (1 - z r ) ( x  - e~)] 

fo r  l '  /> 2, a n d  

G~.(z)  = A x  z+r-3  + B x  Iz-rj + 

fo r  l, l '  > 2;  w i th  

23w 
[2 + z ( e  ~ -  1)] 

Xl' - 1 

(C.3) 

a n d  

B = 

A = 

2(x - e~)(1 - x e  ~) 

ea[2 + z (e  ~ - 1)](1 - x 2) 

2(x  --  ea)(1 --  x e  ~) 

ea[2 + z ( e  ~ -- 1)](1 - x 2) 

z(1 - r ) ( x -  e ~ ) -  (1 - - z r ) ( 1  - - x e  a) 
X 

(C.4) 

z(1 - r)(1 - x e  ~) - (1 - z r ) ( x  - e ~) (C.5)  
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I f  lattice sites l 1> N + 1 in this semiinfinite system are traps,  then 

f~W(z) vW(z) 
~ , ~ ( z )  = c ~ , ( z )  1 + hW(z )  

with 

(C.6) 

z ( x e  ~ _ 1 ) x V - l e  -N~ 
fzW(z)  = 2 [ z ( 1  - r ) ( 1  - x e O  - (1 - z r ) ( x  - e~)]  ' 

/ = 1  

z(e  ~ - I )e -N~(AxU+I-2  + B x  N-l+1 

2(e ~ - x) 

z(a ~ -21)e  -N~ [ A x  z+N-2 BxZ-N ] z(e~ -- 1)e -~  
- [ e ~ - x  + x e ~ l l  2(1 - z )  ' 

I > N  

2(1 - r) (e  ~ - x ) e N a x  N - 1  l '  = 1 

vW(z) = z(1 - r)(1 - x e O  - (1 - z r ) ( x  - eO'  

2 ~ I ~ N  

(C.7) 

e ( Y  + 1)a 
x e  ~ - 1 (AxN+V-2  + BxN-V+~)' 2 ~< I '  4 N (C.8) 

ze~(e ~ - 1) [ A x  2N-1 B x  ) 
hW(z) = 2-~ 2_ e ~  11 - xe-~ + ~ x  (C.9) 

In  this system an addit ional  absorb ing  boundary  is present  at  l = 1 when 
r = 1. The  generat ing GW, A(z) greatly simplifies in this case. 

For  r # 1 the mean  number  of  steps for  t rapping  at any site l >/ N + 1 
and its average over start ing site are 

(e ~ -  1) 2 e ~ -  1 
~w = ( N  - l ' ) ( N  + l '  - 1) e--~-ea--~ ]-) + 2(N - l ' )  e~(e ~ + 1) 

e a -- i 

+ 2(/ '  - 1)e~ + 1  

1 ( N -  l' + 1)(e = -  1) + 2 1 - 2r 1) (1  - ~u,1) 
+ 1 - r e ~ + 1 + ( 1 - r ) ( e  ~ +  

(c.io) 

( n ) W =  ( 2 N -  1 ) ( N -  1) ( e " -  1)2 e a -  1 
37(e  ~ -t21) + ( N -  1) e.  

( N +  1)(e " -  1) 3 -  2r 2 r -  1 
+ 2(1 - r) (e  ~ +  1) + ( 1 - r ) ( e  ~ +  1) + U(1 - r)(e  ~ + 1) (C.11) 
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